Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 48(1): 324-332, 2018 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-30520485

RESUMO

The reaction of Mn(CO)5Br with sodium ethylenedithiolate was reported in 1968 to give a dark red binuclear H2C2S2Mn2(CO)6 complex possessing the unusual property of complexing reversibly with ammonia to give a yellow H2C2S2Mn2(CO)6·NH3 adduct. In order to provide some insight into the nature of this adduct, density functional studies were performed on the H2C2S2Mn2(CO)n (n = 4 to 8) systems as well as their relevant ammonia and trimethylphosphine adducts. These theoretical studies support the structure of H2C2S2Mn2(CO)6 originally suggested 50 years ago involving the binding of the ethylenedithiolate C[double bond, length as m-dash]C double bond as well as the sulfur atoms to the Mn2 unit with a bonding Mn-Mn distance of ∼2.8 Å. Complexation of H2C2S2Mn2(CO)6 with NH3 or Me3P preserves the complexed C[double bond, length as m-dash]C double bond of the ethylenedithiolate ligand but lengthens the MnMn distance to a non-bonding ∼3.6 Å. Thus H2C2S2Mn2(CO)6 represents a novel type of Lewis acid where reversible complexation with Lewis bases involves the rupture of a metal-metal bond. Carbonyl dissociation energies in the H2C2S2Mn2(CO)n series account for the formation of the hexacarbonyl H2C2S2Mn2(CO)6 as the stable product from the Mn(CO)5Br/ethylenedithiolate reaction.

2.
Free Radic Biol Med ; 124: 260-274, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-29928975

RESUMO

Hemoglobin has previously been shown to display ascorbate peroxidase and urate peroxidase activity, with measurable Michaelis-Menten parameters that reveal a particularly low Km for ascorbate as well as for urate - lower than the respective in vivo concentrations of these antioxidants in blood. Also, direct detection of a hemoglobin-ascorbate interaction was possible by monitoring the 1H-NMR spectrum of ascorbate in the presence of hemoglobin. The relative difference in structures between ascorbate and urate may raise the question as to exactly what the defining structural features would be, for a substrate that binds to hemoglobin with high affinity. Reported here are Michaelis-Menten parameters for hemoglobin acting as peroxidase against a number of other substrates of varying structures - gallate, caffeate, rutin, 3-hydroxyflavone, 3,6-dihydroxyflavone, quercetin, epicatechin, luteolin - all with high affinities (some higher than those of physiologically-relevant redox partners of Hb - ascorbate and urate). Moreover, this high affinity appears general to animal hemoglobins. 1H-NMR and 13C-NMR spectra reveal a general pattern wherein small hydrophilic antioxidants appear to all have their signals affected, presumably due to binding to hemoglobin. Fluorescence and calorimetry measurements confirm these conclusions. Docking calculations confirm the existence of binding sites on hemoglobin and on myoglobin for ascorbate as well as for other antioxidants. Support is found for involvement of Tyr42 in binding of three out of the four substrates investigated in the case of hemoglobin (including ascorbate and urate, as blood-contained relevant substrates), but also for Tyr145 (with urate and caffeate) and Tyr35 (with gallate).


Assuntos
Antioxidantes/química , Antioxidantes/metabolismo , Hemoglobinas/química , Hemoglobinas/metabolismo , Animais , Bovinos , Simulação de Acoplamento Molecular , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...